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Abstract

This article introduces a ridge estimator within the Zero-Inflated Probit Bell (ZIPBell) regression
model, developed specifically to handle count data characterized by excess zeros and multicollinear-
ity among predictor variables. By incorporating ridge penalization into the ZIPBell framework, we
provide a methodology that stabilizes parameter estimates by reducing variance and mitigating mul-
ticollinearity effects without excluding correlated predictors. A numerical study and an empirical
application illustrate the robustness of this approach across varying levels of multicollinearity and
data sparsity, presenting a reliable tool for analyzing complex count data with structural zeros and
correlated predictors.

Keywords: Count data, Zero-Inflated Probit Bell model, Ridge regression, Multicollinearity, Penalized
estimation

1 Introduction

Statistical modeling with correlated predictors, or multicollinearity, presents a long-standing challenge,
particularly in complex count data. In traditional regression analysis, multicollinearity refers to a situ-
ation where the predictive variables are highly correlated, leading to unstable coefficient estimates and
increased standard errors [18]. Ridge regression, introduced by [8], is a commonly used technique to ad-
dress this issue by introducing a penalty term that reduces the estimated variance at the cost of a slight
bias. This trade-off often results in more reliable and interpretable models, especially when traditional
methods fail due to multicollinearity.

Zero-inflated (ZI) models, initially introduced by [10] were developed to handle datasets with an
abundance of zeros, where classical count models such as Poisson and negative binomial models fail
to fit adequately. These models assume two processes: one governing the occurrence of zeros, and the
other generating non-zero counts. The framework of zero-inflated models has been widely applied across
various fields, from health sciences to ecology, for studying rare events, equipment failures, and medical
conditions characterized by zero counts [19].

Count datasets often exhibit inflated zeros, which can be addressed using various approaches. The
Zero-Inflated Bell (ZIBell) distribution has emerged as a suitable alternative to the commonly used Zero-
Inflated Poisson (ZIP) distribution for handling this issue. Recognizing the advantages of the ZIBell
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distribution, [12] proposed a new regression model based on the ZIBell distribution, providing a compre-
hensive examination of its properties. More recently, [2] offered an in-depth summary of the asymptotic
properties of the ZIBell model. Building on this foundation, [3] introduced an innovative extension—the
Zero-Inflated Probit Bell (ZIPBell) model. This new model refines the zero-inflated approach by incorpo-
rating a probit link function to effectively handle binary outcomes, thereby improving predictive accuracy
in datasets with a substantial proportion of zeros.

However, while these advances address overdispersion and zero inflation, the challenge of multi-
collinearity among predictors remains unresolved and can complicate parameter estimation. One of the
key limitations in zero-inflated models affected by multicollinearity is the instability of the maximum
likelihood estimator (MLE). When predictor variables are highly correlated, MLE often struggles to con-
verge or yields unreliable estimates, undermining model accuracy and interpretability. These limitations
have spurred researchers to explore alternative estimation techniques, such as ridge regression, which
introduces a penalty term to stabilize coefficient estimates by reducing variance at the expense of some
bias [8]. This trade-off can improve model reliability and interpretability, particularly where traditional
MLE approaches falter under multicollinearity.

The ridge regression, originally introduced by [8], offers a robust solution for dealing with multi-
collinearity. By introducing a penalty term on the regression coefficients, ridge regression shrinks the
estimates towards zero, decreasing variance and minimizing the impact of collinearity without eliminat-
ing correlated predictors. Although initially developed for linear regression contexts, ridge regression has
shown considerable success when extended to other regression frameworks, including logistic and count
data models ([11]; [16];[17]; [9]; [14]; [1]; [15]; [4]; [5]). For example, [16] adapted ridge regression to
Poisson models,[9] applied it to Zero-Inflated Poisson (ZIP) models, and [1] further extended it to the
Zero-Inflated Bell (ZIBell) regression model. [4] applied ridge regression to Bell models to further address
overdispersion in count data.

The integration of ridge regression into zero-inflated models is relatively recent, with researchers
beginning to recognize its potential to enhance estimation stability in theoretical and applied settings
[7]. [7] and [6] demonstrated that a penalized likelihood approach can effectively stabilize parameter
estimates in complex, high-dimensional datasets, encouraging further exploration. Building on this foun-
dation, our study seeks to extend ridge penalization to the Zero-Inflated Probit Bell (ZIPBell) model.
By integrating ridge regression within the ZIPBell framework, we provide theoretical justifications and
empirical validation to showcase its effectiveness. This approach aims to counteract the negative effects
of multicollinearity while preserving the interpretative power of zero-inflated models.

This extension contributes to the literature on penalized estimation for count data but also broadens
the applicability of ridge regression in zero-inflated contexts, where excess zeros and predictor correla-
tions are common. Our proposed model thus addresses the dual challenges of multicollinearity and zero
inflation, bridging an important gap between theoretical developments and practical applications. As ro-
bust regularization techniques are increasingly needed in advanced count data models, this study opens
pathways for further innovations in penalized regression methods.

The article’s structure is as follows: Section 2 offers a comprehensive review of the literature on
ridge regression, zero-inflated models, and Bell distributions, followed by a detailed presentation of the
methodology and formulation of the ridge-Penalized Zero-Inflated Probit Bell (RP-ZIPB) model. Section
3 includes a simulation study to evaluate the model’s performance under varying levels of multicollinearity
and data sparsity. It also demonstrates the model’s application to a real-world dataset, emphasizing its
practical relevance and implications. Finally, Section 4 discusses the model’s strengths, limitations, and
avenues for future research.

2 Preliminaries

In this section, we present the Zero-Inflated Probit Bell (ZIPBell) regression model as provided by [3].

Definition 2.1 (Zero-inflated Probit Bell model):

The random variable Y is said to have zero-inflated Probit Bell distribution, denoted by Y ∼
ZIPBell(π, ϕ) if The general formula of the ZIPBell model has the following form:
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P (Y = y|x, s) = πI(y = 0) + (1− π) exp
(
1− eW (ϕ)

) W (ϕ)yBy

y!
, (1)

for y = 0, 1, 2, · · · ,W (.) is the Lambert function, and By are the Bell numbers.
When risk factors are available, the mixing probability πi is usually modelled by a probit re-

gression: probit(πi) = F (β⊤Si) where F denotes the cumulative distribution function (CDF) of the
standard normal distribution, N (0, 1) and ϕi is classically modelled as ϕi(β) = exp(α⊤Xi). Vec-
tors α = (α1, . . . , αp)

⊤ ∈ Rp and β = (β1, . . . , βq)
⊤ ∈ Rq are unknown regression parameters. Let

Ji = 1{Yi = 0} and J̄i = 1−Ji. Suppose that we observe n independent vectors (Yi,Si,Xi), i = 1, . . . , n.
Let Φ := (α⊤, β⊤)⊤ denote the set of all unknown parameters. Then, the likelihood function of Φ is

Ln(Φ) =

n∏
i=1

[
πi + (1− πi) exp(1− eW (ϕ))

]I(Yi=0)
[
(1− πi) exp(1− eW (ϕ))

W (ϕ)YiBy

Yi!

]I(Yi>0)

. (2)

Using (2) and some algebra, the loglikelihood ℓn(Φ) = logLn(Φ) can be written as :

ℓ(Φ) =

n∑
i=1

{
Ji log

[
F (β⊤si) + (1− F (β⊤si)) exp(1− eW (eα

⊤xi ))

]
+J̄i

[
Yi log(W (eα

⊤xi)) + log(1− F (β⊤si))− eW (eα
⊤xi )

]}
. (3)

The maximum likelihood estimation (MLE) algorithm can optimize ℓ(Φ) to obtain Φ̂, the parameter
estimate of Φ = (α⊤, β⊤)⊤. This optimization is represented as:

Φ̂M = argmax ℓ(Φ). (4)

2.1 Ridge-Penalized Zero-Inflated Probit Bell (RP-ZIPB) model

When multicollinearity among predictors is problematic, ridge estimation offers a practical remedy,
particularly within zero-inflated count models like the Zero-Inflated Probit Bell (ZIPBell) model. Ridge
estimators, introduced by [8], add a penalty term to the log-likelihood function to regularize parameter
estimates, which helps to stabilize them and reduce variance in the presence of highly correlated variables.
Given the ZIPBell model’s log-likelihood function in Equation (3), we define the ridge-penalized log-
likelihood as follows:

ℓridge(Φ) = ℓ(Φ)− λ∥Φ∥2 (5)

=

n∑
i=1

{
Ji log

[
F (β⊤si) + (1− F (β⊤si)) exp(1− eW (eα

⊤xi ))

]
+J̄i

[
Yi log(W (eα

⊤xi)) + log(1− F (β⊤si))− eW (eα
⊤xi )

]}
− λ∥Φ∥2,

where ∥Φ∥2 = α⊤α + β⊤β represents the squared Euclidean norm of the parameter vector Φ, and
λ > 0 is the ridge penalty parameter controlling the degree of shrinkage.

Maximizing the ridge-penalized log-likelihood function ℓridge(Φ) requires solving for Φ while min-
imizing the penalty λ∥Φ∥2. When λ = 0, this reverts to standard maximum likelihood estimation
(MLE) as described by [3]. Increasing λ results in greater shrinkage of the estimates, mitigating issues
of multicollinearity by pulling coefficients toward zero.

To find the ridge estimates Φ̂ridge, we solve the first-order conditions of the penalized log-likelihood:
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∂ℓridge(Φ)

∂Φ
=

∂ℓ(Φ)

∂Φ
− 2λΦ = 0, (6)

where ∂ℓ(Φ)
∂Φ is the gradient of the log-likelihood function, and 2λΦ is the derivative of the penalty

term. By iteratively updating estimates using a modified Newton-Raphson or Fisher scoring algorithm,
we achieve convergence to Φ̂ridge. Each iteration involves:

Φt+1 = Φt − (Hridge(Φ
t))−1∇ℓridge(Φ

t) (7)

where ∇ℓridge(Φ
t) is the gradient vector of the penalized log-likelihood evaluated at the current estimate

Φt, and Hridge(Φ
t) is the Hessian matrix of the log-likelihood at Φt. The algorithm for the ridge regression

estimator converges when:
∥Φ(t+1) −Φ(t)∥2 < ϵ, (8)

where: ϵ > 0 is a pre-specified tolerance level (e.g., 10−6).
Alternatively, convergence can also be determined based on changes in the penalized log-likelihood:∣∣∣ℓridge(Φ(t+1))− ℓridge(Φ

(t))
∣∣∣ < δ, (9)

where: δ > 0 is a small value indicating negligible improvement. For models where the log-likelihood ℓ(θ)
is approximated quadratically, the ridge estimate can be directly computed in closed form:

Φ̂ridge = (H+ kI)−1∇ℓ, (10)

where: H = ∂2ℓ(Φ)
∂Φ∂Φ⊤ is the unpenalized Hessian, ∇ℓ = ∂ℓ(Φ)

∂Φ is the unpenalized gradient, and k > 0 is the
ridge penalty parameter. We adopted the ridge parameters by [1]. The ridge parameters are defined as
follows:

k1 =
p∑p

j=1 Φ̂
2
Mj

, (11)

k2 =
1

min
(
Φ̂2

Mj

) , (12)

k3 = median

(
1

Φ̂2
Mj

)
, (13)

k4 =

(
p∏

j=1

Φ̂2
Mj

) 1
p

, (14)

k5 =

√
p∑p

j=1 Φ̂
2
Mj

. (15)

where: p is the number of predictors, Φ̂Mj represents the maximum likelihood estimate (MLE) of the
j-th parameter.

This closed-form solution is not generally used for estimation but is critical for deriving analytical prop-
erties, such as bias, variance, and SMSE. Using the closed-form approximation, we derive key theoretical
metrics. The ridge estimate introduces bias due to the penalty term:

Bias(Φ̂ridge) = −k(H+ kI)−1ΦM . (16)
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The variance of Φ̂ridge accounts for both the penalty term and the variability in the data. The variance-
covariance matrix is:

Var(Φ̂ridge) = (H+ kI)−1H(H+ kI)−1. (17)

The Mean squared error (MSE) is defined as follows:

MSE(Φ̂ridge) = Bias2(Φ̂ridge) + Var(Φ̂ridge). (18)

The scalar Mean Squared Error (SMSE), which is defined as the trace of the covariance matrix of
the estimator, is expressed as follows:

MSE(Φ̂ridge) =

p∑
j=1

[(
k

Hj + k
Φj

)2

+
Hj

(Hj + k)2

]
, (19)

where Hj represents the diagonal entries of the Hessian, and p is the total number of parameters.

√
n
(
Φ̂ridge − Φ0

)
d−→ N (0,Σridge) (20)

where Σridge is the variance-covariance matrix of the ridge estimator defined in equation (17).

2.2 Pseudo-Code for RI-ZIPBRM

Algorithm 1 RP-ZIPB Estimation Procedure

1: Input: Dataset with response variable y and predictors x1, x2, . . . , xp.

2: Output: Ridge-penalized estimates Φ̂ridge, bias, variance, and MSE.

3: Step 1: Preprocessing
4: Normalize predictors and create model matrices X and S.

5: Step 2: Define the ZIPBell Log-Likelihood
6: Formulate the log-likelihood ℓ(Φ).

7: Step 3: Ridge Penalty
8: Incorporate ridge penalty λ∥Φ∥2 into ℓ(Φ).

9: Step 4: Optimization
10: Solve the penalized log-likelihood using iterative optimization:

Φt+1 = Φt − (Hridge(Φ
t))−1∇ℓridge(Φ

t).

11: Step 5: Derive Theoretical Properties
12: Use the closed-form solution to compute:

� Bias: −λ(H+ λI)−1Φ.
� Variance: (H+ λI)−1H(H+ λI)−1.
� SMSE: trace(MSE).

13: Step 6: Validate and Summarize Results
14: Assess multicollinearity and model stability.
15: Summarize estimates, diagnostics, and visualizations.
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3 Empirical studies

3.1 Simulation

In this section, we evaluate the performance of the Ridge estimator for the ZIPBell model and compare
it with the performance of the Maximum Likelihood Estimation (MLE). To achieve this, the count data
Yi are simulated based on the ZIPBell regression model, which is generated using the following model
structure:

P (Y = y | X,S) =

{
F (S⊤β) +

[
1− F (S⊤β)

]
exp(1− eW (ϕ)) if y = 0,[

1− F (S⊤β)
]
exp(1− eW (ϕ))

W (ϕ)yBy

y! if y > 0,
(21)

where: F (S⊤β) is the cumulative distribution function (CDF) of the standard normal distribution (probit
link), W (ϕ) is the Lambert W function, By are the Bell numbers, and ϕ = exp(X⊤α).

The explanatory variables are X = (X1, X2, . . . , Xp) and S = (S1, S2, . . . , Sq). For simplicity, the co-
variates S1 = X2 and S2 = X5 were used to share components across models [12]. Correlated explanatory
variables are generated using the following equation:

xij =
√

1− ρ2mij + ρmip, (22)

for i = 1, 2, . . . , n and j = 1, 2, . . . , p. Here, mij represents pseudo-random numbers drawn from
the standard normal distribution, and ρ indicates the correlation between the explanatory variables,
with values of ρ = 0.6, 0.9, 0.95, 0.99. For each simulation, the sample sizes considered are n =
50, 100, 150, 300, 500, 1000. The number of explanatory variables p takes values of p = 5 and p = 8 to
examine how the performance of the estimators changes as the number of predictors increases. Each
simulation is repeated 1000 times for every combination of the specified parameters. The performance of
the different estimation methods is evaluated using the Mean Squared Error (MSE) as the comparison
metric.

MSE(Φ̂) =
1

1000

1000∑
r=1

(Φ̂r − Φ)′(Φ̂r − Φ)

where Φ̂r denotes the estimated vector of the true parameter vector Φ in rth replication.
Tables 1 and 2 in the document present simulated mean square error (MSE) values for different

estimators in the Zero-Inflated Probit Bell (ZIPBell) model with ridge penalization, used to handle
multicollinearity in count data. We compare the classical maximum likelihood estimation (MLE) with

several versions of ridge estimators, denoted as k̂1, k̂2, . . . , k̂5, according to the correlation levels (ρ) and
sample size (n). The values of ρ range from 0.60 to 0.99, illustrating increasing levels of multicollinearity
among predictors. Sample sizes increase from 50 to 1000 observations, enabling the evaluation of estimator
performance relative to the amount of data available.

In Table 1, where p = 5 (number of predictors), MSE values for each estimator are measured under
different combinations of ρ and n. The MLE shows higher MSE values than ridge estimators, particularly
when multicollinearity is strong (ρ = 0.90, 0.95, or 0.99). This indicates that ridge estimators effectively
reduce prediction error under severe multicollinearity, as expected by their design. It is observed that
increasing n consistently reduces MSE for all estimators, indicating improved performance with more
data. This trend is clearly illustrated in Figure 1. Ridge estimators tend to converge to more stable values
and outperform MLE more notably in small samples, where multicollinearity particularly affects MLE
variance.

As ρ increases, MLE performance deteriorates faster than ridge estimators. Estimators k̂3 and k̂4 stand
out with lower MSE values in cases of high multicollinearity (e.g., ρ = 0.95 and ρ = 0.99), suggesting
they offer a more suitable penalty for extreme correlation levels. In Table 2, where p = 8, the same
trends observed in Table 1 are confirmed. As anticipated, the MSE values increase with higher levels
of multicollinearity (ρ), highlighting the adverse impact of multicollinearity on estimator performance.
This trend is depicted in Figure 2.

Compared to the results for p = 5, the increase in the number of predictors (from 5 to 8) amplifies the
effect of multicollinearity, particularly for non-penalized estimators. MLE MSE values are significantly
higher under strong multicollinearity, as for ρ = 0.95 and n = 50, highlighting the increased instability
of unpenalized estimates in models with richer variable sets. Ridge estimators, particularly k̂3 and k̂4,
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continue to outperform MLE by reducing MSE values. At ρ = 0.99, ridge estimators have noticeably
lower MSE values, confirming the advantage of ridge penalization in situations of extreme predictor
correlation.

The results of both tables demonstrate that ridge estimators provide more stable estimates than
MLE, especially when multicollinearity is high and the sample size is small. Using different penalty
coefficients λ in ridge estimators allows adjusting the regularization degree according to the intensity
of multicollinearity and sample size, optimizing the balance between bias and variance. These tables
confirm that integrating ridge penalization in the ZIPBell model effectively addresses the challenges of
multicollinearity in count data. Ridge estimators reduce prediction error (MSE), particularly in situations
of high multicollinearity or small samples, thus offering a robust alternative to maximum likelihood
estimation.
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Table 1: Simulated MSE values of the estimators when p = 5. Note that all results are based on N = 1000 simulated samples.

RP-ZIPB RP-ZIPB

ρ n MLE k̂1 k̂2 k̂3 k̂4 k̂5 MLE k̂1 k̂2 k̂3 k̂4 k̂5

0.60 50 1.0787 0.5744 0.4930 0.4263 0.4402 0.5314 1.7680 0.8303 0.6243 0.4699 0.5119 0.7024
100 0.8081 0.4521 0.3742 0.3454 0.3498 0.4365 0.7489 0.5190 0.4507 0.4143 0.3974 0.3929
150 0.6478 0.4302 0.3814 0.3428 0.3495 0.4463 0.4139 0.3791 0.3790 0.3890 0.3703 0.2487
300 0.5476 0.3498 0.3313 0.3216 0.3231 0.3851 0.2148 0.3449 0.3739 0.3908 0.3816 0.1956
500 0.5509 0.3424 0.3289 0.3214 0.3224 0.3842 0.1595 0.3558 0.3779 0.3937 0.3884 0.2161
1000 0.5294 0.3294 0.3239 0.3209 0.3213 0.3666 0.1166 0.3672 0.3839 0.3956 0.3932 0.2343

0.90 50 1.5990 1.0341 0.8861 0.6612 0.6952 0.8648 3.0285 1.6844 1.4025 1.0320 1.1289 1.4296
100 1.0996 0.6895 0.5873 0.4247 0.4380 0.5902 1.4466 0.8960 0.7811 0.5609 0.5554 0.6651
150 0.8655 0.5869 0.5057 0.3882 0.4007 0.5306 0.7131 0.5604 0.5243 0.4169 0.3914 0.3910
300 0.7836 0.4909 0.4287 0.3422 0.3482 0.4869 0.4595 0.4105 0.4102 0.3926 0.3676 0.2579
500 0.7105 0.4185 0.3763 0.3245 0.3283 0.4489 0.3504 0.3727 0.3941 0.3967 0.3795 0.2268
1000 0.6860 0.3793 0.3500 0.3219 0.3240 0.4386 0.2609 0.3435 0.3641 0.3923 0.3841 0.2236

0.95 50 2.8883 2.0835 1.8488 1.4714 1.5018 1.6622 4.9427 3.1970 2.9245 2.3698 2.4967 2.6903
100 1.6284 1.1380 1.0066 0.7183 0.7340 0.8933 1.9993 1.4920 1.3459 0.9506 0.9616 1.1312
150 1.3376 0.9348 0.8405 0.5639 0.5784 0.7385 1.5230 1.1790 1.0870 0.6559 0.6721 0.8418
300 0.9827 0.6908 0.6004 0.3678 0.3900 0.6176 0.7428 0.6078 0.5834 0.3894 0.3714 0.4258
500 0.7985 0.5325 0.4610 0.3347 0.3463 0.5248 0.4539 0.4225 0.4257 0.3767 0.3543 0.2758
1000 0.9018 0.5239 0.4648 0.3246 0.3307 0.5385 0.4951 0.4355 0.4366 0.3860 0.3706 0.2894

0.99 50 13.2242 9.4606 8.8688 7.8065 7.9824 7.7133 20.6767 15.3167 15.0525 13.7919 14.1487 13.7892
100 6.0860 5.3068 4.8552 3.8485 4.0143 3.9744 9.9855 8.4337 8.2387 6.7842 7.1452 6.9088
150 4.4873 3.9861 3.6544 2.8801 2.9462 2.9054 6.3439 5.9124 5.7441 4.5689 4.6944 4.3844
300 2.7675 2.2077 2.0543 1.2997 1.3447 1.6333 3.2721 2.8768 2.7540 1.6972 1.7207 1.9493
500 2.3539 2.0340 1.9382 1.0427 1.0758 1.3987 2.5663 2.3868 2.2998 1.1713 1.1664 1.4462
1000 1.8323 1.5385 1.4472 0.6326 0.6638 1.0443 1.8899 1.7322 1.6583 0.7117 0.7059 1.0098
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Table 2: Simulated MSE values of the estimators when p = 8. Note that all results are based on N = 1000 simulated samples.

RP-ZIPB RP-ZIPB

ρ n MLE k̂1 k̂2 k̂3 k̂4 k̂5 MLE k̂1 k̂2 k̂3 k̂4 k̂5

0.60 50 0.7722 0.2992 0.2604 0.2501 0.2521 0.2972 1.7395 0.5221 0.4912 0.4631 0.4680 0.5638
100 0.7082 0.2760 0.2530 0.2490 0.2502 0.2868 0.7422 0.4058 0.4054 0.4330 0.4031 0.3511
150 0.4975 0.2657 0.2500 0.2476 0.2483 0.2778 0.4798 0.3508 0.4141 0.4368 0.4139 0.2635
300 0.4153 0.2498 0.2464 0.2462 0.2463 0.2609 0.2080 0.3367 0.4267 0.4419 0.4290 0.1807
500 0.3994 0.2484 0.2464 0.2463 0.2463 0.2575 0.1349 0.3650 0.4345 0.4437 0.4366 0.1884
1000 0.3710 0.2474 0.2464 0.2463 0.2464 0.2516 0.0763 0.4024 0.4416 0.4460 0.4427 0.2151

0.90 50 1.5882 0.5972 0.4508 0.3535 0.3702 0.5335 4.1336 1.3891 1.1310 0.8370 0.9532 1.3070
100 0.9061 0.4814 0.3578 0.2906 0.3001 0.4411 1.7511 0.9407 0.7085 0.5472 0.5688 0.8408
150 0.7557 0.3747 0.2916 0.2631 0.2655 0.3700 1.0132 0.6345 0.5091 0.4675 0.4512 0.5379
300 0.5263 0.3050 0.2594 0.2512 0.2522 0.2522 0.4367 0.4191 0.4366 0.4460 0.4250 0.2858
500 0.4340 0.2726 0.2505 0.2475 0.2477 0.2792 0.2350 0.3627 0.4225 0.4381 0.4248 0.2067
1000 0.3954 0.2549 0.2474 0.2466 0.2466 0.2614 0.1289 0.3754 0.4333 0.4426 0.4351 0.2069

0.95 50 2.5849 0.8300 0.5753 0.5753 0.6231 0.8913 7.5638 2.6572 2.3570 1.6557 1.9565 2.4798
100 1.5044 0.8619 0.6482 0.4538 0.4741 0.6891 3.0252 1.8124 1.4181 0.9663 1.0740 1.5744
150 1.0083 0.6121 0.4336 0.3237 0.3364 0.5307 1.7175 1.1527 0.8320 0.6111 0.6358 0.9809
300 0.6779 0.4024 0.3047 0.2678 0.2706 0.3736 0.7346 0.5933 0.5069 0.4668 0.4456 0.4488
500 0.5820 0.3371 0.2801 0.2618 0.2613 0.3242 0.4633 0.4336 0.4506 0.4517 0.4290 0.2832
1000 0.4573 0.2915 0.2608 0.2499 0.2504 0.2880 0.2492 0.3990 0.4402 0.4415 0.4297 0.2228

0.99 50 9.8399 5.2838 4.9676 3.9744 4.1358 4.2326 28.7262 11.5900 11.3741 9.9768 10.5058 10.8848
100 5.3619 3.5922 3.1586 2.2535 2.3778 2.6914 13.4107 7.9429 7.4806 5.6483 6.2591 7.0829
150 1.0083 0.6121 0.4336 0.3237 0.3364 0.5307 1.7175 1.1527 0.8320 0.6111 0.6358 0.9809
300 2.0868 1.5200 1.2526 0.9095 0.9358 1.0905 3.6030 2.8951 2.4008 1.7481 1.8413 2.2335
500 1.3746 1.0575 0.8299 0.5317 0.5631 0.8522 1.8647 1.6781 1.3349 0.9223 0.9304 1.2803
1000 0.7458 0.5212 0.3854 0.3034 0.3155 0.4958 0.7572 0.6847 0.5629 0.5021 0.4802 0.5369
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Figure 1: MSE against sample size for ρ = 0.99 using the data from Table 1
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Figure 2: MSE against the level of multicollinearity for n = 50 using the data from Table 1

3.2 Real data analysis

In this section, we evaluate the performance of the proposed methods using two real-life datasets, namely
the blood transfusion data and the pollutant emissions data.

3.2.1 Application 1: Blood transfusion dataset

The dataset represents the blood transfusions received by 150 randomly selected thalassemia patients in
Mosul, Iraq [1]. The following explanatory variables were recorded for each patient: x1 (age in months),
x2 (duration of thalassemia in months), x3 (haemoglobin concentration), x4 (packed cell volume), x5

(number of blood units), and x6 (age at the onset of blood transfusion in months). The dataset exhibits
a zero-inflation ratio of 0.52, as shown in Figure 3, indicating a substantial proportion of zeros in the
response variable. This justifies the suitability of the Zero-Inflated Probit Bell (ZIPBell) model for ana-
lyzing the data. The correlation heatmap in Figure 4 revealed significant relationships between certain
predictor variables, indicating the presence of multicollinearity. This finding underscores the necessity of
employing regularization methods, such as ridge regression, as utilized in this study. To further corrobo-
rate these findings, we conducted a Variance Inflation Factor (VIF) analysis to quantify and confirm the
degree of multicollinearity among the predictors. The Variance Inflation Factor (VIF) is calculated as
VIFj =

1
1−R2

j
, and R2

j represents the coefficient of determination from regressing xj on the remaining ex-

planatory variables. Based on the VIF analysis, variables x1 (VIF = 37.51) and x5 (VIF = 35.12) exhibit
strong multicollinearity, while x3 (VIF = 14.25) and x4 (VIF = 11.13) exhibit moderate multicollinear-
ity. On the other hand, x2 (VIF = 2.66) and x6 (VIF = 2.86) have relatively low VIFs, suggesting a weak
correlation with the other variables. To overcome multicollinearity, the Ridge method is used in the ZIP-
Bell model. After adjusting the ZI model, the mean squared errors (MSE), standard errors (SE) of the
maximum likelihood estimator (MLE), and RP-ZIPB with different ridge parameters are calculated us-
ing equations (11) and (15). Table 3 presents the estimated coefficients (β and α), standard errors (SE),
and MSE values for different estimators (MLE and Ridge estimators). The Ridge estimators, particu-
larly using k3 and k4 as the biasing parameters, outperform MLE in terms of SMSE. This improvement
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is reflected by a significant reduction in the SMSE values for β and α, indicating greater stability of the
estimated coefficients. For example, for β1, the ridge estimator with biasing parameter k3 shows a much
lower standard error (se(k3) = 0.0002) than the MLE (se = 0.1352).

Figure 3: Histogram of the Blood Transfusion Dataset.

Figure 4: Correlation heatmap of predictors.
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3.2.2 Application 2: pollutant emissions dataset

We consider another empirical application to illustrate the advantages of the proposed estimator. This
dataset concerns the daily emissions count from a specific pollutant (such as NO2) measured in an
urban area. The sample size of this dataset includes n = 100 observations with a response variable and
four explanatory variables. The zero inflation reflects days when no detectable emissions were recorded
(e.g., days of heavy rain that disperse pollutants). The explanatory variable x1 represents the average
ozone (O3) concentration, x2 represents the daily air quality index, and x3 represents the average daily
temperature. The histogram of y is displayed in Figure 5. The dataset exhibits a zero-inflation ratio of
0.53, as shown in Figure 5, indicating a substantial proportion of zeros in the response variable. The
correlation heatmap in Figure 6 revealed strong positive correlations among the variables: x1 and x2

have a very high correlation (r = 0.97), suggesting that emissions represented by these variables are
closely related. x1 and x3 show a strong positive correlation (r = 0.88), though slightly weaker than
x1 and x2. x2 and x3 also have a strong positive correlation (r = 0.86). These results indicate that
all three variables are interconnected, likely reflecting similar underlying phenomena or processes in
pollution emissions. Due to the strong correlations observed among the variables, we further investigated
the potential for multicollinearity in the model using the condition index. The condition index for this
dataset was calculated to be 254.3948, which strongly indicates the presence of severe multicollinearity
among the explanatory variables.

Consequently, we adopted the RP-ZIPB estimation method to address the effect of multicollinearity.
Table 4 compares the performance of different estimators (MLE and Ridge) on a dataset of pollutant
emissions. The coefficients (βi and αi) estimated using Ridge decrease progressively in magnitude as
the penalization increases (k1 to k5), unlike those obtained by MLE, which remain larger. For example,

β1 decreases from 0.5296 (MLE) to 0.0146 (k̂5), demonstrating that Ridge reduces the influence of less
significant terms. This decrease highlights the effect of regularization, which tends to stabilize estimates
by minimizing non-essential contributions.

The standard errors of the estimated coefficients are consistently smaller for Ridge than for MLE,
reflecting improved precision. As the penalization increases, the standard errors further decrease, indicat-
ing a reduction in uncertainty associated with the estimates. For instance, for β1, se drops from 0.9528
(MLE) to 0.1137 (k̂5). These results confirm that Ridge regularization, by introducing an additional
constraint, enhances the robustness of the estimated coefficients.

Finally, the mean squared errors (MSE) show that Ridge offers better predictive performance com-
pared to MLE. The MSE values for the coefficients (β and α) are significantly reduced with Ridge,

decreasing from 83.168 and 109.109 (MLE) to 0.0011 and 0.0007 (k̂5), respectively. This demonstrates
that Ridge regularization is particularly suitable in situations where MLE estimates may be unstable
or prone to large errors, while emphasizing that excessive penalization could lead to overly diminished
coefficients.

The two empirical studies (blood transfusions and pollutant emissions) demonstrate that the RP-
ZIPB model outperforms the classical maximum likelihood estimation (MLE), not only in terms of
MSE but also in terms of the stability of the estimated coefficients. These improvements are crucial for
decision-making based on complex statistical models.
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Figure 5: Histogram of the daily number of NO2

Figure 6: Correlation Heatmap for Pollution Emission Data
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Table 3: Estimated coefficients, standard errors, and MSE values for the specified estimators in the fish dataset.

Ridge estimators

MLE k̂1 k̂2 k̂3 k̂4 k̂5 se se(k̂1) se(k̂2) se( k̂3) se(k̂4) se(k̂5)

β1 0.4252 -0.0373 -0.0142 -0.0002 -0.0048 0.0382 0.1352 0.6444 0.0164 0.0002 0.0047 2.2954
β2 0.0765 0.0960 -0.0422 -0.0007 -0.0177 0.1457 0.6549 0.7684 0.0710 0.0008 0.0219 1.5742
β3 -0.0100 -0.0126 -0.0075 -0.0001 -0.0028 -0.0092 0.1737 0.8213 0.0212 0.0002 0.0060 2.3859
β4 0.7418 0.5511 0.1102 0.0014 0.0377 0.6431 0.4566 0.7741 0.0708 0.0008 0.0215 1.6379
β5 -0.5258 -0.5469 -0.1030 -0.0013 -0.0347 -0.5963 0.5947 0.7940 0.0669 0.0007 0.0202 1.6881
β6 -0.3612 -0.1676 0.0256 0.0005 0.0120 -0.2346 0.6305 0.7634 0.0687 0.0008 0.0211 1.6125
α1 -0.0463 -0.0542 -0.0051 0.0000 -0.0014 -0.0607 0.1615 0.7508 0.0196 0.0002 0.0056 2.2597
α2 -0.9065 -0.5900 -0.1173 -0.0015 -0.0394 -0.7332 0.3983 1.0980 0.0452 0.0005 0.0135 1.8445
α3 -0.3446 -0.4287 -0.2103 -0.0033 -0.0811 -0.4157 1.2258 0.8269 0.1105 0.0015 0.0386 2.3075
α4 0.1043 0.0629 0.0048 0.0000 0.0010 0.0778 0.3285 1.0674 0.0397 0.0004 0.0114 1.8039
α5 2.4730 2.2236 0.5623 0.0074 0.1933 2.3845 1.1498 0.6958 0.1072 0.0014 0.0367 1.8810
α6 -1.9371 -1.9440 -0.4986 -0.0065 -0.1704 -1.9754 1.0288 0.7876 0.0983 0.0013 0.0331 2.3237

MSE(β) 364.4566 4.1982 0.0459 0.000007 0.0050 24.7864
MSE(α) 114.0265 12.0328 0.6564 0.000116 0.0787 28.6658

Table 4: Estimated coefficients, standard errors, and MSE values for the specified estimators in the pollutant emissions dataset.

Ridge estimators

MLE k̂1 k̂2 k̂3 k̂4 k̂5 se se(k̂1) se(k̂2) se(k̂3) se( k̂4) se(k̂5)

β1 0.5296 0.1708 0.1363 0.1085 0.0146 0.0822 0.9528 0.2426 0.1914 0,1510 0.0198 0.1137
β2 0.0661 -0.0924 -0.0769 -0.0629 -0.0090 -0.0488 0.7954 0.2149 0.1667 0.1300 0.0166 0.0970
β3 -0.4293 -0.0813 -0.0619 -0.0476 -0.0058 -0.0351 0.4436 0.1559 0.1136 0.0846 0.0094 0.0605
α1 0.5393 0.1273 0,1003 0,0791 0,0103 0,0595 0,7837 0.2240 0,1721 0,1331 0,0165 0,0984
α2 0.1733 -0.0638 -0,0528 -0,0430 -0,0061 -0,0332 0,6773 0.2021 0,1535 0,1178 0,0143 0,0865
α3 -0.4949 -0.0663 -0.0499 -0.0380 -0.0045 -0.0277 0.3713 0.1367 0.0986 0.0728 0.0079 0.0518

MSE(β) 83.168 0.1580 0.0976 0.0607 0.0011 0.0345
MSE(α) 109.109 0.1303 0.0765 0.0456 0.0007 0.0249
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4 Conclusions

Zero-inflated (ZI) models, first introduced by [10], were specifically designed to address datasets charac-
terized by an excessive number of zeros, where traditional count models such as Poisson and Negative
Binomial often fail to provide adequate fit. While classical models assume equidispersion or slight overdis-
persion, real-world count data often exhibit an excess of zeros, which these models are ill-equipped to
handle. This limitation necessitates the development of more flexible alternatives. The Zero-Inflated
Bell (ZIBell) distribution has emerged as a robust solution, offering distinct advantages over the Zero-
Inflated Poisson (ZIP) distribution by effectively addressing the zero-inflation issue while providing
greater flexibility in modeling the count component.

Building on the foundational work of [12] , which introduced the ZIBell regression model and explored
its theoretical properties, [2] provided a rigorous examination of the asymptotic properties of the ZIBell
framework. Recently, [3] extended this line of research by proposing the Zero-Inflated Probit Bell (ZIP-
Bell) model, incorporating a probit link function for the binary outcome component. This advancement
enhances the model’s capacity to predict binary zero-inflated structures while maintaining robustness in
datasets with a high proportion of zeros.

Despite these innovations, a critical challenge persists in the form of multicollinearity among pre-
dictors, which inflates the variance of parameter estimates and undermines the reliability of classical
estimation techniques such as MLE. Recognizing this gap, our study introduces the Ridge-Penalized Zero-
Inflated Probit Bell (RP-ZIPB) regression model. This enhanced framework combines ridge penalization
with the ZIPBell structure to simultaneously address the challenges of multicollinearity, overdispersion,
and excess zeros.

Integrating of ridge penalization into the ZIPBell model stabilizes parameter estimates by mitigating
multicollinearity’s effects while preserving the predictive contributions of correlated variables. Through
extensive numerical simulations and empirical applications, the proposed methodology demonstrates
superior performance, particularly under scenarios of severe multicollinearity and data sparsity. The
results reveal a consistent reduction in estimator variance, improved model fit, and robust predictive
capabilities, establishing the Ridge-Penalized ZIPBell model as a versatile and reliable tool for analyzing
complex count data. It is obvious that the performance of the proposed method is a function of the
adopted biasing parameter.

This work extends the theoretical utility of the ZIPBell framework but also bridges a critical method-
ological gap in regression analysis for zero-inflated count data with correlated predictors. Future research
could explore the integration of adaptive ridge penalties and alternative regularization techniques to
enhance further the model’s scalability and efficiency in high-dimensional settings. Additionally, compar-
ative analyses with other penalized ZI models could provide deeper insights into the practical advantages
of this approach across diverse fields such as public health, econometrics, and environmental science.
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